Abstract Typical longitudinal radiographic assessment of brain tumors relies on side-by-side qualitative visualization of serial magnetic resonance images (MRIs) aided by quantitative measurements of tumor size. However, when assessing slowly growing tumors and/or complex tumors, side-by-side visualization and quantification may be difficult or unreliable. Whole-brain, patient-specific “digital flipbooks” of longitudinal scans are a potential method to augment radiographic side-by-side reads in clinical settings by enhancing the visual perception of changes in tumor size, mass effect, and infiltration across multiple slices over time. In this approach, co-registered, consecutive MRI scans are displayed in a slide deck, where one slide displays multiple brain slices of a single timepoint in an array (eg, 3 × 5 “mosaic” view of slices). The flipbooks are viewed similarly to an animated flipbook of cartoons/photos so that subtle radiographic changes are visualized via perceived motion when scrolling through the slides. Importantly, flipbooks can be created easily with free, open-source software. This article describes the step-by-step methodology for creating flipbooks and discusses clinical scenarios for which flipbooks are particularly useful. Example flipbooks are provided in Supplementary Material.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.