Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)–loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped ( E D-sHDL) or chemically conjugated ( C D-sHDL) DM1. We found that C D-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than E D-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)–mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving C D-sHDL, leading to a better efficacy and immune memory of C D-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 ( C D-Lipo) showed lower immunotoxicity than those with entrapped drug ( E D-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.
Support the authors with ResearchCoin
Support the authors with ResearchCoin