Exploring the chemistry of materials at high pressure leads to discoveries of previously unknown compounds and phenomena. Here chemical reactions between elemental dysprosium and carbon were studied in laser-heated diamond anvil cells at pressures up to 95 GPa and temperatures of ∼2800 K. In situ single-crystal synchrotron X-ray diffraction (SCXRD) analysis of the reaction products revealed the formation of novel dysprosium carbides, γ-DyC2, Dy5C9, and γ-Dy4C5, along with previously reported Dy3C2 and Dy4C3. The crystal structures of γ-DyC2 and Dy5C9 feature infinite flat carbon polyacene-like ribbons and cis-polyacetylene-type chains, respectively. In the structure of γ-Dy4C5, carbon atoms form dimers and non-linear trimers. Dy3C2 contains ethanide-type carbon dumbbells, and Dy4C3 is methanide featuring single carbon atoms. Density functional theory calculations reproduce well the crystal structures of high-pressure dysprosium carbides and reveal conjugated π-electron systems in novel infinite carbon polyanions. This work demonstrates that complex carbon homoatomic species previously unknown in organic chemistry can be synthesised at high pressures by direct reactions of carbon with metals.
Support the authors with ResearchCoin