In this study, we develop a stacked ensemble model that utilizes cell-free DNA (cfDNA) fragmentomics for the early detection of esophageal squamous cell carcinoma (ESCC). This model incorporates four distinct fragmentomics features derived from whole-genome sequencing (WGS) and advanced machine learning algorithms for robust analysis. It is validated across both an independent validation cohort and an external cohort to ensure its generalizability and effectiveness. Notably, the model maintains its robustness in low-coverage sequencing environments, demonstrating its potentials in clinical settings with limited sequencing resources. With its remarkable sensitivity and specificity, this approach promises to significantly improve the early diagnosis and management of ESCC. This study represents a substantial step forward in the application of cfDNA fragmentomics in cancer diagnostics, emphasizing the need for further research to fully establish its clinical efficacy.