A nonparametric point-by-point (NPP) method is presented for high-accuracy measurement of the time-dependent frequency (laser frequency) in tunable laser absorption spectroscopy, crucial for ensuring ultimate measurement accuracy. In wavelength modulation spectroscopy in particular, the parametric methods in current use for time-dependent frequency measurement are insufficiently accurate and are difficult to apply to complex modulation scenarios. Based on a multi-scale viewpoint, point-by-point measurement of the frequency is realized by linear superposition of the frequency information mapped from the interferometric signal on a unit scale and on a local scale. Validation experiments indicate that the measurement accuracy of the proposed NPP method is three times that of the existing parametric methods, while effectively immunizing against non-ideal tuning effects. Additionally, the NPP method is suitable for use with arbitrarily complex modulations such as square wave modulation, for which parametric methods are inapplicable.
Support the authors with ResearchCoin