Uneven lithium deposition poses a primary challenge for lithium-ion batteries, as it often triggers the growth of lithium dendrites, thereby significantly compromising battery performance and potentially giving rise to safety concerns. Therefore, the high level of safety must be guaranteed to achieve the large-scale application of battery energy storage systems. Here, we present a novel separator design achieved by incorporating a two-dimensional A-type molecular sieve coating onto the polypropylene separator surface, which functions as an effective lithium ion redistribution layer. The results demonstrated that even after undergoing 1000 cycles, the cell equipped with a two-dimensional A-type molecular sieve-Polypropylene (2D-A-PP) separator still maintains an impressive capacity retention rate of 70 %. In contrast, cells equipped with Polypropylene (PP) separators exhibit capacity retention rates below 50 % after only 500 cycles. Additionally, the incorporation of a two-dimensional molecular sieve enhances the mechanical properties of the PP separator, thereby bolstering battery safety. This study proposes a novel concept for the design of lithium-ion battery separator materials, offering a fresh perspective on the development of separators with exceptional thermal stability, enhanced porosity, superior electrolyte affinity, and effective inhibition of lithium dendrite formation.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.