The bimetallic nanostructure of Au and Ag can integrate two distinct properties into a novel substrate compared to single metal nanostructures. This work presents a rapid and sensitive surface-enhanced Raman scattering (SERS) substrate for detecting illegal food additives and dyes of crystal violet (CV) and alkali blue 6B (AB 6B). Au-Ag alloy nanoparticles/Ag nanowires (Au-Ag ANPs/Ag NWs) were prepared by solid-state ionics method and vacuum thermal evaporation method at 5μA direct current electric field (DCEF), the molar ratio of Au to Ag was 1:18.34. Many 40 nm-140 nm nanoparticles regularly existed on the surface of Ag NWs with the diameters from 80 nm to 150 nm. The fractal dimension of Au-Ag ANPs/Ag NWs is 1.69 due to macroscopic dendritic structures. Compared with single Ag NWs, the prepared Au-Ag ANPs/Ag NWs substrates show superior SERS performance because of higher surface roughness, the SERS active of Ag NWs and bimetallic synergistic effect caused by Au-Ag ANPs, so the limit of detections (LOD) of Au-Ag ANPs/Ag NWs SERS substrates toward detection of CV and AB 6B were as low as 10
Support the authors with ResearchCoin