Paper
Document
Download
Flag content
0

Conversion of monocropping to intercropping promotes rhizosphere microbiome functionality and soil nitrogen cycling

0
TipTip
Save
Document
Download
Flag content

Abstract

Intercropping can increase soil nutrient availability and provide greater crop yields for intensive agroecosystems. Despite its multiple benefits, how intercropping influences rhizosphere microbiome assemblages, functionality, and complex soil nitrogen cycling is not fully understood. Here, a three-year field experiment was carried out on different cropping system with five fertilization treatments at the main soybean production regions. We found that soybean yields in intercropped systems were on average 17 % greater than in monocropping system, regardless of fertilization treatments. We also found that intercropping systems significant increased network modularity (by 46 %) and functional diversity (by 11 %) than monocropping systems. Metagenomics analyses further indicated intercropping promotes microbiome functional adaptation, particularly enriching core functions related to nitrogen metabolism. Cropping patterns had a stronger influence on the functional genes associated with soil nitrogen cycling (R

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.