Establishing collaborations between cohort studies has been fundamental for progress in health research. However, such collaborations are hampered by heterogeneous data representations across cohorts and legal constraints to data sharing. The first arises from a lack of consensus in standards of data collection and representation across cohort studies and is usually tackled by applying data harmonization processes. The second is increasingly important due to raised awareness for privacy protection and stricter regulations, such as the GDPR. Federated learning has emerged as a privacy-preserving alternative to transferring data between institutions through analyzing data in a decentralized manner.
Support the authors with ResearchCoin
Support the authors with ResearchCoin