Tetracycline (TC) is one of the most frequently detected antibiotics in environmental. Monitoring the concentration of TC is essential for understanding environmental fate of antibiotics. In this work, bimetallic N-doped carbon catalysts of M/Co@NC (M= Ni, Mn, Cu, Zn, Fe) were rationally synthesized via molten salt-assisted pyrolysis. The distinctive synergistic interplay between Cu and Co endowed Cu/Co@NC superior activation capacity for peroxymonosulphate (PMS). Inspired by the advantages of sulfate radical (SO4•−), an original colorimetric sensing platform was developed by using PMS as oxidant and rhodamine B(RhB) as chromogenic agents. Notably, this platform achieved an ultrafast visual reaction within 60 s and exhibited broad pH applicability under pH 2-9. Then, leveraging a competitive inhibition mechanism, dual-mode colorimetric and fluorescent sensing platforms were established for TC detection under neutral conditions. The fluorescent platform exhibited a reliable liner range from 0.001 to 15 μg/mL with limit of detection of 2 ng/mL. Excellent selectivity was found for TC even among different antibiotics. Theoretical calculations elucidated that the superior selectivity arises from a higher electrophilic attack (f -) of TC. Based on these finding, a smartphone-assisted test strip was developed and successfully deployed for the rapid monitoring of TC in practical water samples. This work not only synthesized an efficient PMS activator, but also proposed a novel visual sensing mode with ultrafast detection times, wide pH applicability and portable operation.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.