An increasingly collaborative and distributed nature of scientific collaborations, along with the exploding volume and variety of datasets point to an urgent need for data publication frameworks that allow researchers to publish data rapidly and reliably. However, current scientific data publication solutions only support any one of these requirements at a time. Currently, the most common data publication models are either centralized or ad-hoc. While the centralized model (e.g., publishing via a repository controlled by a central organization) can provide reliability through replication, the publication speed tends to be slower due to the inevitable curation and processing delays. Further, such centralized models may place restrictions regarding what data can be published through them. On the contrary, adhoc models lead to concerns such as the lack of replication and a robust security model. We present Hydra, a peer-to-peer, decentralized storage system that enables decentralized and reliable data publication capabilities. Hydra enables collaborating organizations to create a loosely interconnected and federated storage overlay atop community provided storage servers. The Hydra overlay is entirely decentralized. Hydra enables secure publication and access to data from anywhere and ensures automatic replication of published data, enhancing availability and reliability. Hydra also makes replication decisions without a central controller while accommodating local policies. Hydra embodies a significant stride toward next-generation scientific data management, fostering a decentralized, reliable, and accessible system that fits the changing landscape of scientific collaborations.