Paper
Document
Download
Flag content
0

High-performance alkaline aqueous zinc battery enabled by nickel-cobalt-tellurium materials

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

The capacity and cycling performance of cathodes are key factors in aqueous zinc batteries (AZBs). The search for cathode materials with long cycle lives and high specific capacities is of paramount importance. In this study, a bimetallic telluride with a hollow polyhedral structure was synthesized using a hydrothermal method followed by vapor deposition. This composite exhibits high conductivity, facilitates rapid diffusion of electrolyte ions into the interior, and accelerates redox reactions, thereby enhancing electrochemical performance. The CoTe2-NiTe2 electrode demonstrates an impressive specific capacity of 188.8 mAh/g at 1 A/g, highlighting its efficiency in storing a significant amount of charge per unit mass during electrochemical reactions. The assembled CoTe2-NiTe2//Zn battery shows favorable capacity retention (76.4%) after 10000 cycles. The energy density is remarkably high, reaching 290.3 Wh/kg, while maintaining a power density of 1.75 kW/kg. This bimetallic telluride strategy holds great promise as an alternative cathode for AZBs.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or