Porosity plays an essential role in the performance of ceramics. In this study, the effects of clay composition and firing temperature on the pore size distribution of ceramics were evaluated by small-angle neutron scattering (SANS) measurements. Compared with quartz-rich pure Kasama clay, a mullite-rich Kasama clay blend had smaller pores after heat treatment. SANS measurements of D2O-absorbed samples revealed that open pores with sizes ranging from tens of nanometers to about a micrometer contributed to the absorption of water. The closed and open pores coarsened and the total porosity decreased with increasing firing temperature.
Support the authors with ResearchCoin