Paper
Document
Submit new version
Download
Flag content
0

Phenogrouping heart failure with preserved or mildly reduced ejection fraction using electronic health record data

0
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

Abstract Background Heart failure (HF) with preserved or mildly reduced ejection fraction includes a heterogenous group of patients. Reclassification into distinct phenogroups to enable targeted interventions is a priority. This study aimed to identify distinct phenogroups, and compare phenogroup characteristics and outcomes, from electronic health record data. Methods 2,187 patients admitted to five UK hospitals with a diagnosis of HF and a left ventricular ejection fraction ≥ 40% were identified from the NIHR Health Informatics Collaborative database. Partition-based, model-based, and density-based machine learning clustering techniques were applied. Cox Proportional Hazards and Fine-Gray competing risks models were used to compare outcomes (all-cause mortality and hospitalisation for HF) across phenogroups. Results Three phenogroups were identified: (1) Younger, predominantly female patients with high prevalence of cardiometabolic and coronary disease; (2) More frail patients, with higher rates of lung disease and atrial fibrillation; (3) Patients characterised by systemic inflammation and high rates of diabetes and renal dysfunction. Survival profiles were distinct, with an increasing risk of all-cause mortality from phenogroups 1 to 3 ( p < 0.001). Phenogroup membership significantly improved survival prediction compared to conventional factors. Phenogroups were not predictive of hospitalisation for HF. Conclusions Applying unsupervised machine learning to routinely collected electronic health record data identified phenogroups with distinct clinical characteristics and unique survival profiles.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or