Abstract Sensory cortices represent the world through the activity of diversely tuned cells. How the activity of single cells is coordinated within populations and across sensory hierarchies is largely unknown. Cortical oscillations may coordinate local and distributed neuronal groups. Using datasets from intracortical multi-electrode recordings and from large-scale electrocorticography (ECoG) grids, we investigated how visual features could be extracted from the local field potential (LFP) and how this compared with the information available from multi-unit activity (MUA). MUA recorded from macaque V1 contained comparable amounts of information as simultaneously recorded LFP power in two frequency bands, one in the alpha-beta band and the other in the gamma band. ECoG-LFP contained information in the same bands as microelectrode-LFP, even when identifying natural scenes. The fact that information was contained in the same bands in both intracortical and ECoG recordings suggests that oscillatory activity could play similar roles at both spatial scales.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.