Computational approaches are widely applied in drug discovery to explore properties related to bioactivity, physiochemistry, and toxicology. Over at least the last 20 years, the exploitation of machine learning on molecular data sets has been used to understand the structure-activity relationships that exist between biomolecules and druggable targets. More recently, these methods have also seen application for phenotypic screening data for neglected diseases such as tuberculosis and malaria. Herein, we apply machine learning to build quantum Quantitative Structure Activity Relationship models from antimalarial data sets. There is a continual need for new antimalarials to address drug resistance, and the readily available
Support the authors with ResearchCoin