Abstract One of the challenges of next generation sequencing (NGS) is read contamination. We used the Genotype-Tissue Expression (GTEx) project, a large, diverse, and robustly generated dataset, to understand the factors that contribute to contamination. We obtained GTEx datasets and technical metadata and validating RNA-Seq from other studies. Of 48 analyzed tissues in GTEx, 26 had variant co-expression clusters of four known highly expressed and pancreas-enriched genes ( PRSS1 , PNLIP , CLPS , and/or CELA3A ). Fourteen additional highly expressed genes from other tissues also indicated contamination. Sample contamination by non-native genes was associated with a sample being sequenced on the same day as a tissue that natively expressed those genes. This was highly significant for pancreas and esophagus genes (linear model, p=9.5e-237 and p=5e-260 respectively). Nine SNPs in four genes shown to contaminate non-native tissues demonstrated allelic differences between DNA-based genotypes and contaminated sample RNA-based genotypes, validating the contamination. Low-level contamination affected 4,497 (39.6%) samples (defined as 10 PRSS1 TPM). It also led ≥ to eQTL assignments in inappropriate tissues among these 18 genes. We note this type of contamination occurs widely, impacting bulk and single cell data set analysis. In conclusion, highly expressed, tissue-enriched genes basally contaminate GTEx and other datasets impacting analyses. Awareness of this process is necessary to avoid assigning inaccurate importance to low-level gene expression in inappropriate tissues and cells.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.