Since the first measurements of neuronal avalanches [1], the critical brain hypothesis has gained traction [2]. However, if the brain is critical, what is the phase transition? For several decades it has been known that the cerebral cortex operates in a diversity of regimes [3], ranging from highly synchronous states (e.g. slow wave sleep [4], with higher spiking variability) to desynchronized states (e.g. alert waking [5], with lower spiking variability). Here, using independent signatures of criticality, we show that a phase transition occurs in an intermediate value of spiking variability. The critical exponents point to a universality class different from mean-field directed percolation (MF-DP). Importantly, as the cortex hovers around this critical point [6], it follows a linear relation between the avalanche exponents that encompasses previous experimental results from different setups [7, 8] and is reproduced by a model.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.