Paper
Document
Download
Flag content
0

First report of tomato as a natural host of tobacco vein banding mosaic virus (TVBMV) in Yunnan, China

0
TipTip
Save
Document
Download
Flag content

Abstract

Tomatoes (Solanum lycopersicum L.), as a significant solanaceous crop, have attracted global research interest focused on elucidating its plant virus incidence, epidemiology, and pathogenicity, especially in field production (Li et al. 2021; Rivarez et al. 2023). Tobacco vein banding mosaic virus (TVBMV) is classified in the genus Potyvirus. Since its discovery, TVBMV has been documented to infect tobacco, potato, jimsonweed, wild eggplant under nature conditions (Wang et al. 2017). Also, TVBMV could be transmitted to tomatoes by aphids (Myzus persicae) in laboratory conditions (Bi et al. 2020). However, to date, there is no sequence representing TVBMV infecting tomato deposited in NCBI nucleotide database. In August 2023, about 30% of tomato planted in an open field showing typical viral disease symptoms (chlorosis, yellowing, mosaic, curling, and mottling) in Dali, Yunnan, China. To identify the potential pathogen, about 9 symptomatic leave from different plants were collected, pooled and sent for high-throughput sequencing. In summary, total RNA was extracted using TRIzol ® Reagent (Invitrogen, CA, USA). Subsequently, RNA sequencing libraries were constructed using the TruSeq RNA sample prep kit (Illumina, CA, USA), followed by RNA-Seq sequencing performed on an Illumina HiSeq4000 platform (LC Sciences, USA). A total of 71,368,934 raw reads (paired-end) of the length 150-bp were generated. After quality control, 69,746,872 reads were retained and subjected to de novo assembly using Trinity (version 2.8.5). The assembled contigs (ranging from 186 nt to 15,573 nt) were searched against the NCBI non-redundant protein (NR) to detect potential viral pathogens using BLASTx with a cutoff e-value of 10 -5 . As a result, 2 viral contigs were assigned to 2 known viruses: TVBMV (Depth: 1960X, BLASTn similarity: 95.26%) and chilli veinal mottle virus (ChiVMV) (Depth: 3581X, BLASTn similarity: 98.22%). No other viruses and viroids were detected. The presence of TVBMV and ChiVMV were tested positive in all of the 9 samples originally collected. Notably, the detection primer for TVBMV identified in tomato (TVBMV-tomato) was designed from the newly assembled TVBMV genome (Forward: 5’- CTCGGTGAGGAAGGTGACATAAGT’; Reverse: 5’- CTTTCAACACCAGGGAATCTAGTG -3’). The nearly complete genome sequence of TVBMV-tomato was validated by overlapping RT-PCR and submitted to NCBI nucleotide database (accession: PP848192). To assess TVBMV-tomato infectivity, symptomatic tomato leaf sap was mechanically inoculated onto 4 healthy tomatoes, with healthy tomato leaf sap serving as a control. After 3 weeks, plants inoculated with symptomatic sap showed leaf curling and stunting, while control plants remained unaffected. All symptomatic samples tested positive for TVBMV via RT-PCR (4/4). For comparison, TVBMV could not be detected in the control sample. Sanger sequencing verified the expected 986 bp amplicon sequences. However, ChiVMV was also detected in all symptomatic tomato samples, which makes it possible that the symptoms after inoculation were the result of the synergism of TVBMV and ChiVMV. Phylogenetic analysis based on complete coding sequence revealed that TVBMV-tomato was most closely related to TVBMV identified from Solanum lyratum. To our knowledge, this work represents the first report of natural occurrence of TVBMV in agroecosystem in Yunnan, China.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.