Many G protein-coupled receptors (GPCRs) lack common variants that lead to reproducible genome-wide disease associations. Here we used rare variant approaches to assess the disease associations of 85 orphan or understudied GPCRs in an unselected cohort of 51,289 individuals. Rare loss-of-function variants, missense variants predicted to be pathogenic or likely pathogenic, and a subset of rare synonymous variants were used as independent data sets for sequence kernel association testing (SKAT). Strong, phenome-wide disease associations shared by two or more variant categories were found for 39% of the GPCRs. Validating the bioinformatics and SKAT analyses, functional characterization of rare missense and synonymous variants of GPR39, a Family A GPCR, showed altered expression and/or Zn2+-mediated signaling for members of both variant classes. Results support the utility of rare variant analyses for identifying disease associations for genes that lack common variants, while also highlighting the functional importance of rare synonymous variants.\n\nAuthor summaryRare variant approaches have emerged as a viable way to identify disease associations for genes without clinically important common variants. Rare synonymous variants are generally considered benign. We demonstrate that rare synonymous variants represent a potentially important dataset for deriving disease associations, here applied to analysis of a set of orphan or understudied GPCRs. Synonymous variants yielded disease associations in common with loss-of-function or missense variants in the same gene. We rationalize their associations with disease by confirming their impact on expression and agonist activation of a representative example, GPR39. This study highlights the importance of rare synonymous variants in human physiology, and argues for their routine inclusion in any comprehensive analysis of genomic variants as potential causes of disease.