Atmospheric boundary layer (ABL) structure was a crucial factor in altering the vertical aerosol distribution and modulating the impact of regional aerosol transport on the atmospheric environment in the receptor region. The long-term characteristics of ABL structures for different vertical aerosol distributions and the distinct influencing mechanisms between daytime and nighttime aerosol transport interacting with the diurnal ABL transition have rarely been studied in the receptor regions. Based on 9-year (2013-2021) satellite-retrieved profiles of aerosol extinction coefficients and meteorological sounding data, we targeted Wuhan, an urban city with noteworthy transport contribution in central China, to reveal the general wintertime transport height of ∼500 m and the corresponding unstable ABL structure during regional transport. By comparing typical daytime and nighttime aerosol transport with high-resolution Lidar observations, the aerosol transport near the ABL top coupled with intense mechanical mixing provided sufficient meteorological conditions for heavy aerosol pollution formation in the receptor regions, which was more favorable during nighttime transport followed by the adequate ABL development after sunrise. These findings enhance our comprehension of the ABL impact on air pollution in the receptor regions, which have implications for the precise prevention and control of the regional atmospheric environment.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.