The quality of organic thin films critically influences carrier dynamics in organic semiconductors. In neat/doped films, even tiny voids can be penetrated by water or oxygen molecules to create charge‐trap states called water/oxygen‐induced traps that significantly hinder carrier mobility. While the water/oxygen‐induced traps in non‐doped films and crystalline states have been investigated comprehensively, there is a lack of thorough examination regarding their properties in the doped state. Therefore, there is a high demand for a molecular design strategy that effectively modulates the molecular stacking behavior in doped films and practical devices and enhances the quality of these films. Herein, we proposed a versatile molecular design principle that enables the formation of "nano‐cluster" structures on both the surface and interior of doped films in target molecule 10‐(4‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)phenyl)‐1'‐(4‐fluorophenyl)‐10H‐spiro[acridine‐9,9'‐xanthene] (DspiroO‐F‐TRZ), which is modified with a fluorophenyl group. These "nano‐cluster" structures exhibit more uniform shapes within doped films and effectively reduce defective state densities while enhancing carrier injection and transport properties, ultimately improving device performance. Notably, TADF‐OLED based on DspiroO‐F‐TRZ demonstrates nearly twice as much efficiency as its control counterpart due to contributions from 'nano‐cluster' structure enhancements toward improved electroluminescence performance.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.