Fourier transform ion cyclotron resonance mass spectrometry of dissolved organic matter (DOM) extracted from environmental samples provides molecular speciation that enables visualization of compositional trends in the fate and cycling of biogenic and anthropogenic organics. Often, chemical contamination is introduced during field sampling (i.e., remote locations, cannot use glass). Further, preconcentration of DOM by solid-phase extraction often results in chemical contamination. When chemical noise is a dominant fraction of the ion signal, mass spectral performance is degraded by reduction of the ion trap analyte accumulation capacity and enhanced ion cloud dephasing during ICR detection. We have developed gas-phase ion depletion of unwanted chemical contaminants during ion injection into the linear RF ion trap of the hybrid linear ion trap 21 T FT-ICR mass spectrometer that improves detection of analytes by removing unwanted chemical noise. We demonstrate improvements in signal-to-noise ratio, dynamic range, and the number of observed analytes in dissolved organic matter samples that results in a 40-100% increase in the number of identified analytes. In many cases, the number of peaks observed per nominal mass more than doubles over select
Support the authors with ResearchCoin