Abstract Rational design of non‐noble materials as highly efficient, economical, and durable bifunctional catalysts for oxygen evolution and reduction reactions (OER/ORR) is currently a critical obstacle for rechargeable metal‐air batteries. A new route involving S was developed to achieve atomic dispersion of Fe‐N x species on N and S co‐decorated hierarchical carbon layers, resulting in single‐atom bifunctional OER/ORR catalysts for the first time. The abundant atomically dispersed Fe‐N x species are highly catalytically active, the hierarchical structure offers more opportunities for active sites, and the electrical conductivity is greatly improved. The obtained electrocatalyst exhibits higher limiting current density and a more positive half‐wave potential for ORR, as well as a lower overpotential for OER under alkaline conditions. Moreover, a rechargeable Zn–air battery device comprising this hybrid catalyst shows superior performance compared to Pt/C catalyst. This work will open a new avenue to design advanced bifunctional catalysts for reversible energy storage and conversion devices.
Support the authors with ResearchCoin