Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual’s genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. The power of the latest massively parallel synthetic DNA sequencing technologies is demonstrated in two major collaborations that shed light on the nature of genomic variation with ethnicity. The first describes the genomic characterization of an individual from the Yoruba ethnic group of west Africa. The second reports a personal genome of a Han Chinese, the group comprising 30% of the world's population. These new resources can now be used in conjunction with the Venter, Watson and NIH reference sequences. A separate study looked at genetic ethnicity on the continental scale, based on data from 1,387 individuals from more than 30 European countries. Overall there was little genetic variation between countries, but the differences that do exist correspond closely to the geographic map. Statistical analysis of the genome data places 50% of the individuals within 310 km of their reported origin. As well as its relevance for testing genetic ancestry, this work has implications for evaluating genome-wide association studies that link genes with diseases.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.