SUMMARY During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability which underpin the function these transcription factories remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI in the nanoscale organisation of RNAPII. We reveal that myosin VI acts as the molecular anchor that holds RNAPII into transcription factories. Perturbation of myosin VI leads to the disruption of RNAPII localisation, changes in chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of myosin VI in the spatial regulation of gene expression during the rapid response to changes in the cellular environment.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.