This paper presents control design for strict feedback nonlinear systems with time-varying output constraints. An asymmetric time-varying Barrier Lyapunov Function (BLF) is employed to ensure constraint satisfaction. By allowing the barriers to vary with the desired trajectory in time, the initial condition requirements are relaxed. Through a change of tracking error coordinates, we eliminate the explicit dependence of the BLF on time, thereby simplifying the analysis of constraint satisfaction. We show that asymptotic output tracking is achieved without violation of the output constraint, and also quantify the transient performance bound as a function of time that converges to zero. To handle parametric model uncertainty, we present an adaptive controller that ensures constraint satisfaction during the transient phase of online parameter adaptation. The performance of the proposed control is illustrated through a simulation example.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.