Abstract

The genome of the zebra finch — a songbird and a model for the study of vertebrate brain, behaviour and evolution — has been sequenced. Its comparison with the chicken genome, the only other bird genome available, shows that genes with neural function and implicated in cognitive processing of song have been rapidly evolving in the finch lineage. The study also shows that vocal communication engages much of the zebra finch brain transcriptome and identifies a potential integrator of microRNA signals linked to vocal communication. The genome of the zebra finch — a songbird and a model for studying the vertebrate brain, behaviour and evolution — has been sequenced. Comparison with the chicken genome, the only other bird genome available, shows that genes that have neural function and are implicated in the cognitive processing of song have been evolving rapidly in the finch lineage. Moreover, vocal communication engages much of the transcriptome of the zebra finch brain. The zebra finch is an important model organism in several fields1,2 with unique relevance to human neuroscience3,4. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken5—the only bird with a sequenced genome until now6. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes7. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.