The widely debated reaction mechanism for the conversion of methanol to hydrocarbons over acidic zeolite H-ZSM-5 has been investigated using isotopic labeling. The mechanistic findings for H-ZSM-5 are clearly different from those previously described at a detailed level for H-β and H-SAPO-34 catalysts. On the basis of the current set of data, we can state that, for H-ZSM-5, ethene appears to be formed exclusively from the xylenes and trimethylbenzenes. Moreover, propene and higher alkenes are to a significant extent formed from alkene methylations and interconversions. This implies that ethene formation is mechanistically separated from the formation of higher alkenes, an insight of utmost importance for understanding and possibly controlling the ethene/propene selectivity in methanol-to-alkenes catalysis.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.