In this strategy, the fluorescence sensor Nap-Co-T1 employing the fluorescence resonance energy transfer (FRET) mechanism was designed and synthesized to have an efficient response to Heparin, and the FRET mechanism was explored for different excitation-emission wavelengths with different distances between the energy acceptor and the energy donor (comparing with fluorescence sensor Nap-TPA-T2). Upon the addition of Heparin, the fluorescence emission of Nap-Co-T1 was turned on at 565 nm, and the fluorescence color changed of the solution from colorless to bright yellow. The limit of detection (LOD) was as low as 0.04 μg/mL. With the addition of antagonistic protamine (PRTM) to the sensor complex with Heparin, the fluorescence emission was turned off to a certain extent, and the reversibility of the "off-on-off" system was maintained for five cycles or more. In addition, Nap-Co-T1 provides rapid and sensitive detection of Heparin in human serum albumin solution and artificial urine and is highly sensitive to environmental viscosity.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.