The enhancer-binding protein AP-1 has been purified to >95% homogeneity from HeLa cells by sequence-specific DNA affinity chromatography and identified as a 47 kd polypeptide. Purified AP-1 activates transcription in vitro of the wild-type human metallothionein IIA (hMT IIA) gene but not mutant hMT IIA promoters lacking AP-1 recognition sites. DNAase I protection analysis indicates that genetically defined enhancer elements in hMT IIA, SV40, and the human collagenase gene contain high-affinity AP-1-binding sites, each with a conserved recognition motif, TGACTCA. These three genes are transcriptionally induced by treatment of cells with the tumor promoter TPA. Here we demonstrate that multiple synthetic copies of the consensus AP-1-binding site can act as TPA-inducible enhancers in various plasmid constructs after transfection into HeLa cells. These findings suggest that AP-1 is a transcription factor that functions by interacting with a specific enhancer element, and that its activities may be modulated by treatment of cells with TPA, known to stimulate protein kinase C.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.