A heterostructured crystalline bilayer specimen is known to produce moiré fringes (MFs) in the conventional transmission electron microscopy (TEM). However, the understanding of how these patterns form in scanning transmission electron microscopy (STEM) remains limited. Here, we extended the double-scattering model to establish the imaging theory of MFs in STEM for a bilayer sample and applied this theory to successfully explain both experimental and simulated STEM images of a perovskite PbZrO