Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) translocates effector molecules via its Salmonella pathogenicity island (SPI)1 encoded type 3 secretion system (T3SS) to induce internalization by intestinal epithelial cells and manipulate cellular responses. Among these effector molecules, the Salmonella outer protein B (SopB) was shown to possess phosphatidyl-inositol phosphatase activity and induce bacterial internalisation, promote cell survival, influence endosomal trafficking and alter host cell signalling. Using a neonatal S. Typhimurium infection model, we here show that SopB in vivo suppresses early epithelial chemokine expression, delays mucosal immune cell recruitment, reduces barrier impairment by enterocyte necroptosis, and prevents disease progression and premature death. Unexpectedly, this immunosuppressive effect was independent of the phosphatidyl-inositol phosphatase and phosphotransferase activity of SopB but required an intact N-terminal domain. Thus, SopB exerts a potent phosphatase-independent immunosuppressive effect to delay local tissue inflammation and disease progression likely to promote host transmission.
Support the authors with ResearchCoin
Support the authors with ResearchCoin