Abstract Developing methodologies in the fields of phenomics and genomic prediction have the potential to increase the production of crop species by accelerating germplasm improvement. The integration of these technologies into germplasm improvement and breeding programs requires evidence that there will be a direct economic benefit to the program. We determined a basic set of parameters, such as prediction accuracy greater than 0.3, the ability to genotype over 7 lines for the cost of one phenotypic evaluation, and heritability levels below 0.4, at which the use of genomic selection would be of economic benefit in terms of genetic gain and operational costs to the Kansas State University (KSU) winter wheat breeding program. The breeding program was then examined to determine whether the parameters benefitting genomic selection were observed or achievable in a practical sense. Our results show that the KSU winter wheat breeding program is at a decision point with regards to their primary means of selection. A few operational changes to increase prediction accuracy would place the program in the parameter space where genomic selection is expected to outpace the current phenotypic selection methodology at a parity of the operation cost and would be of greatest benefit to the program.