Paper
Document
Download
Flag content
0

Ignition and high gain with ultrapowerful lasers*

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

Ultrahigh intensity lasers can potentially be used in conjunction with conventional fusion lasers to ignite inertial confinement fusion (ICF) capsules with a total energy of a few tens of kilojoules of laser light, and can possibly lead to high gain with as little as 100 kJ. A scheme is proposed with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration. Second, a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high-density core of the capsule by the ponderomotive force associated with high-intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high-intensity laser–plasma interactions, which then propagate from critical density to this high-density core. This new scheme also drastically reduces the difficulty of the implosion, and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultrahigh-intensity laser and of transporting this energy to the fuel.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.