Clinical prediction models aim to predict outcomes in individuals, to inform diagnosis or prognosis in healthcare. Hundreds of prediction models are published in the medical literature each year, yet many are developed using a dataset that is too small for the total number of participants or outcome events. This leads to inaccurate predictions and consequently incorrect healthcare decisions for some individuals. In this article, the authors provide guidance on how to calculate the sample size required to develop a clinical prediction model.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.