High-coverage sequencing of 79 (wild and captive) individuals representing all six non-human great ape species has identified over 88 million single nucleotide polymorphisms providing insight into ape genetic variation and evolutionary history and enabling comparison with human genetic diversity. In an effort to provide insights into great ape genetic variation, the authors sequence 79 wild- and captive-born individuals from across all six great ape species and seven subspecies. Their data and analyses shed light on population structure and gene flow, inbreeding, inferred dynamics of effective population sizes and the differences in the rate of gene loss among the great apes. This new catalogue of great ape genome diversity provides a valuable resource for evolutionary and conservation studies. Most great ape genetic variation remains uncharacterized1,2; however, its study is critical for understanding population history3,4,5,6, recombination7, selection8 and susceptibility to disease9,10. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.