We present the Viewpoint Feature Histogram (VFH), a descriptor for 3D point cloud data that encodes geometry and viewpoint. We demonstrate experimentally on a set of 60 objects captured with stereo cameras that VFH can be used as a distinctive signature, allowing simultaneous recognition of the object and its pose. The pose is accurate enough for robot manipulation, and the computational cost is low enough for real time operation. VFH was designed to be robust to large surface noise and missing depth information in order to work reliably on stereo data.
Support the authors with ResearchCoin