Paper
Document
Download
Flag content
0

Fine-scale ecological and transcriptomic data reveal niche differentiation of an allopolyploid from diploid parents in Cardamine

0
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Polyploidization, or whole genome duplication, is one of the major mechanisms of plant speciation. Allopolyploids (species that harbor polyploid genomes originating from hybridization of different diploid species) have been hypothesized to occupy a niche with intermediate, broader, or fluctuating environmental conditions compared with parental diploids. It remains unclear whether empirical data support this hypothesis and whether specialization of expression patterns of the homeologs (paralogous gene copies resulting from allopolyploidization) relates to habitat environments. Here, we studied the ecology and transcriptomics of a wild allopolyploid Cardamine flexuosa and its diploid parents C. hirsuta and C. amara at a fine geographical scale in their native area in Switzerland. We found that the diploid parents favored opposite extremes in terms of soil moisture, soil carbon-to-nitrogen ratios, and light availability. The habitat of the allopolyploid C. flexuosa was broader compared with those of its parental species and overlapped with those of the parents, but not at its extremes. In C. flexuosa , the genes related to water availability were overrepresented among those at both the expression level and the expression ratio of homeolog pairs, which varied among habitat environments. These findings provide empirical evidence for niche differentiation between an allopolyploid and its diploid parents at a fine scale, where both ecological and transcriptomic data indicated water availability to be the key environmental factor for niche differentiation. Significance statement Polyploidization, or whole genome duplication, is common in plants and may contribute to their ecological diversification. However, little is known about the niche differentiation of wild allopolyploids relative to their diploid parents and the gene expression patterns that may underlie such ecological divergence. We detected niche differentiation between the allopolyploid Cardamine flexuosa and its diploid parents C. amara and C. hirsuta along water availability gradient at a fine scale. The ecological differentiation was mirrored by the dynamic control of water availability-related gene expression patterns according to habitat environments. Thus, both ecological and transcriptomic data revealed niche differentiation between an allopolyploid species and its diploid parents.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.