Paper
Document
Download
Flag content
0

Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

The “reliability ensemble averaging” (REA) method for calculating average, uncertainty range, and a measure of reliability of simulated climate changes at the subcontinental scale from ensembles of different atmosphere–ocean general circulation model (AOGCM) simulations is introduced. The method takes into account two “reliability criteria”: the performance of the model in reproducing present-day climate (“model performance” criterion) and the convergence of the simulated changes across models (“model convergence” criterion). The REA method is applied to mean seasonal temperature and precipitation changes for the late decades of the twenty-first century, over 22 land regions of the world, as simulated by a recent set of nine AOGCM experiments for two anthropogenic emission scenarios (the A2 and B2 scenarios of the Intergovernmental Panel for Climate Change). In the A2 scenario the REA average regional temperature changes vary between about 2 and 7 K across regions and they are all outside the estimated natural variability. The uncertainty range around the REA average change as measured by ± the REA root-mean-square difference (rmsd) varies between 1 and 4 K across regions and the reliability is mostly between 0.2 and 0.8 (on a scale from 0 to 1). For precipitation, about half of the regional REA average changes, both positive and negative, are outside the estimated natural variability and they vary between about −25% and +30% (in units of percent of present-day precipitation). The uncertainty range around these changes (± rmsd) varies mostly between about 10% and 30% and the corresponding reliability varies widely across regions. The simulated changes for the B2 scenario show a high level of coherency with those for the A2 scenario. Compared to simpler approaches, the REA method allows a reduction of the uncertainty range in the simulated changes by minimizing the influence of “outlier” or poorly performing models. The method also produces a quantitative measure of reliability that shows that both criteria need to be met by the simulations in order to increase the overall reliability of the simulated changes.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.