Paper
Document
Download
Flag content
0

Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

We have developed a new method, i.e., XLOGP3, for logP computation. XLOGP3 predicts the logP value of a query compound by using the known logP value of a reference compound as a starting point. The difference in the logP values of the query compound and the reference compound is then estimated by an additive model. The additive model implemented in XLOGP3 uses a total of 87 atom/group types and two correction factors as descriptors. It is calibrated on a training set of 8199 organic compounds with reliable logP data through a multivariate linear regression analysis. For a given query compound, the compound showing the highest structural similarity in the training set will be selected as the reference compound. Structural similarity is quantified based on topological torsion descriptors. XLOGP3 has been tested along with its predecessor, i.e., XLOGP2, as well as several popular logP methods on two independent test sets: one contains 406 small-molecule drugs approved by the FDA and the other contains 219 oligopeptides. On both test sets, XLOGP3 produces more accurate predictions than most of the other methods with average unsigned errors of 0.24−0.51 units. Compared to conventional additive methods, XLOGP3 does not rely on an extensive classification of fragments and correction factors in order to improve accuracy. It is also able to utilize the ever-increasing experimentally measured logP data more effectively.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.