Paper
Document
Download
Flag content
0

Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction

0
TipTip
Save
Document
Download
Flag content

Abstract

Porous metal-organic frameworks (MOFs) have been arousing a great interest in exploring the application of MOFs as photocatalyst in environment remediation. In this work, two different MOFs, Ti-benzenedicarboxylate (MIL-125(Ti)) and amino-functionalized Ti-benzenedicarboxylate (NH2-MIL-125(Ti)) were successfully synthesized via a facile solvothermal method. The MIL-125(Ti) and NH2-MIL-125(Ti) were well characterized by XRD, SEM, XPS, N2 adsorption–desorption measurements, thermogravimetric analysis and UV–vis diffuse reflectance spectra (DRS). It is revealed that the NH2-MIL-125(Ti) has well crystalline lattice, large surface area and mesoporous structure, chemical and thermal stability, and enhanced visible-light absorption up to 520 nm, which was associated with the chromophore (amino group) in the organic linker. Compared with MIL-125(Ti), NH2-MIL-125(Ti) exhibited more efficient photocatalytic activity for Cr(VI) reduction from aqueous solution under visible-light irradiation. The addition of hole scavenger, the hole scavenger concentration and the pH value of the reaction solution played important roles in the photo-catalytic reduction of Cr(VI). The presence of Ti3+–Ti4+ intervalence electron transfer was the main reason for photo-excited electrons transportation from titanium-oxo clusters to Cr(VI), facilitating the Cr(VI) reduction under the acid condition. It was demonstrated that amino-functionalized Ti(IV)-based MOFs could be promising visible-light photocatalysts for the treatment of Cr(VI)-contained wastewater.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.