Paper
Document
Download
Flag content
0

Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

Transcription factors (TFs) interact with specific DNA regulatory sequences to control gene expression throughout myriad cellular processes. However, the DNA binding specificities of only a small fraction of TFs are sufficiently characterized to predict the sequences that they can and cannot bind. We present a maximally compact, synthetic DNA sequence design for protein binding microarray (PBM) experiments1 that represents all possible DNA sequence variants of a given length k (that is, all 'k-mers') on a single, universal microarray. We constructed such all k-mer microarrays covering all 10–base pair (bp) binding sites by converting high-density single-stranded oligonucleotide arrays to double-stranded (ds) DNA arrays. Using these microarrays we comprehensively determined the binding specificities over a full range of affinities for five TFs of different structural classes from yeast, worm, mouse and human. The unbiased coverage of all k-mers permits high-throughput interrogation of binding site preferences, including nucleotide interdependencies, at unprecedented resolution.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or