Paper
Document
Download
Flag content
0

The effect of grain size and grain orientation on deformation twinning in a Fe–22wt.% Mn–0.6wt.% C TWIP steel

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

We investigate the effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel using microstructure observations by electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD). Samples with average grain sizes of 3 μm and 50 μm were deformed in tension at room temperature to different strains. The onset of twinning concurs in both materials with yielding which leads us to propose a Hall–Petch-type relation for the twinning stress using the same Hall–Petch constant for twinning as that for glide. The influence of grain orientation on the twinning stress is more complicated. At low strain, a strong influence of grain orientation on deformation twinning is observed which fully complies with Schmid's law under the assumption that slip and twinning have equal critical resolved shear stresses. Deformation twinning occurs in grains oriented close to 〈1 1 1〉//tensile axis directions where the twinning stress is larger than the slip stress. At high strains (0.3 logarithmic strain), a strong deviation from Schmid's law is observed. Deformation twins are now also observed in grains unfavourably oriented for twinning according to Schmid's law. We explain this deviation in terms of local grain-scale stress variations. The local stress state controlling deformation twinning is modified by local stress concentrations at grain boundaries originating, for instance, from incoming bundles of deformation twins in neighboring grains.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.