The triboelectric nanogenerator (TENG) is a powerful approach toward new energy technology, especially for portable electronics. A theoretical model for the sliding‐mode TENG is presented in this work. The finite element method was utilized to characterize the distributions of electric potential, electric field, and charges on the metal electrodes of the TENG. Based on the FEM calculation, the semi‐analytical results from the interpolation method and the analytical V‐Q‐x relationship are built to study the sliding‐mode TENG. The analytical V‐Q‐x equation is validated through comparison with the semi‐analytical results. Furthermore, based on the analytical V‐Q‐x equation, dynamic output performance of sliding‐mode TENG is calculated with arbitrary load resistance, and good agreement with experimental data is achieved. The theory presented here is a milestone work for in‐depth understanding of the working mechanism of the sliding‐mode TENG, and provides a theoretical basis for further enhancement of the sliding‐mode TENG for both energy scavenging and self‐powered sensor applications.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.