Elizabethkingia anophelis has been the cause of four outbreaks with significant morbidity and mortality. Its transmission routes remain unknown and no point source of infection has been identified. Here we show that E. anophelis can be found in the saliva of Aedes mosquitoes, suggesting the novel possibility of vector-borne transmission of this bacterium. We additionally characterized diverse microbial communities in Aedes midguts, salivary glands and saliva. To the best of our knowledge, this represents the first description of the microbiome of Aedes saliva. Further, we demonstrate that increased abundance of E. anophelis is associated with decreased susceptibility and replication of Zika virus (ZIKV) in the midgut of Aedes mosquitoes, suggesting a novel transmission barrier for arboviruses transmitted by Aedes mosquitoes. Together, these results demonstrate the complex relationships between the mosquito, the midgut microbial community and arboviruses and offer insights into the epidemiology and control of emerging bacterial and viral pathogens. Author SummaryElizabethkingia anophelis has in the recent past caused outbreaks different parts of the world resulting both in morbidity and mortality. Until now, to the best of our knowledge, no study has been able to demonstrate that this bacterium can be transmitted by mosquitoes. We have demonstrated for the first time that Elizabethkingia anophelis is present in the saliva of both infected and non-infected Aedes mosquitoes. Further, we have shown that it confers an inhibitory effect on Zika virus establishment in the midguts of Aedes mosquitoes. Together, these results potentially display the potential for vector borne transmission of E. anophelis as well as a novel transmission barrier of ZIKV. Lastly, we have for the first time characterized salivary microbes of Aedes mosquitoes necessitating the investigation of the impact of salivary microbes in severity of disease in vertebrate hosts.