Abstract The rational design of an efficient and inexpensive electrocatalyst based on earth‐abundant 3d transition metals (TMs) for the hydrogen evolution reaction still remains a significant challenge in the renewable energy area. Herein, a novel and effective approach is developed for synthesizing ultrafine Co nanoparticles encapsulated in nitrogen‐doped carbon nanotubes (N‐CNTs) grafted onto both sides of reduced graphene oxide (rGO) (Co@N‐CNTs@rGO) by direct annealing of GO‐wrapped core–shell bimetallic zeolite imidazolate frameworks. Benefiting from the uniform distribution of Co nanoparticles, the in‐situ‐formed highly graphitic N‐CNTs@rGO, the large surface area, and the abundant porosity, the as‐fabricated Co@N‐CNTs@rGO composites exhibit excellent electrocatalytic hydrogen evolution reaction (HER) activity. As demonstrated in electrochemical measurements, the composites can achieve 10 mA cm −2 at low overpotential with only 108 and 87 mV in 1 m KOH and 0.5 m H 2 SO 4 , respectively, much better than most of the reported Co‐based electrocatalysts over a wide pH range. More importantly, the synthetic strategy is versatile and can be extended to prepare other binary or even ternary TMs@N‐CNTs@rGO (e.g., Co–Fe@N‐CNTs@rGO and Co–Ni–Cu@N‐CNTs@rGO). The strategy developed here may open a new avenue toward the development of nonprecious high‐performance HER catalysts.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.