From social networks to targeted advertising, big graphs capture the structure in data and are central to recent advances in machine learning and data mining. Unfortunately, directly applying existing data-parallel tools to graph computation tasks can be cumbersome and inefficient. The need for intuitive, scalable tools for graph computation has lead to the development of new graph-parallel systems (e.g., Pregel, PowerGraph) which are designed to efficiently execute graph algorithms. Unfortunately, these new graph-parallel systems do not address the challenges of graph construction and transformation which are often just as problematic as the subsequent computation. Furthermore, existing graph-parallel systems provide limited fault-tolerance and support for interactive data mining.