Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland. Although genetically bland, the posterior fossa group A subgroup of ependymomas, found often in infants and associated with poor prognosis, exhibit widespread epigenetic alterations, namely a CpG island methylator phenotype; these tumours are shown to be susceptible both in vitro and in vivo to various compounds that target epigenetic modifications, such as DNA methylation and H3K27 tri-methylation. In this issue of Nature two groups present independent genomic analyses on ependymomas, a type of tumour that occurs throughout the nervous system, but most commonly in the hindbrain in children. Mack et al. found a low overall mutation rate and no significant recurrent mutations in 47 hindbrain ependymomas. But posterior fossa group B tumours, a subgroup found predominantly in infants and associated with poor prognosis, were distinguished by a CpG island methylator phenotype. This subgroup is shown to be susceptible to various compounds that target epigenetic modifications, including an EZH2 inhibitor that showed efficacy in a mouse xenograft model. Parker et al. found the C11orf95–RELA fusion gene in about 70% of supratentorial tumours, but not in other ependymoma subgroups. The gene fusions arise through chromothripsis and lead to the expression of a fusion protein that constitutively activates NF-κB signalling. In a mouse model, expression of C11orf95–RELA in neural stem cells leads to the formation of brain tumours. These findings identify NF-κB signalling as a possible therapeutic target in patients with this type of ependymoma.