Paper
Document
Download
Flag content
0

Observation of topologically protected bound states in photonic quantum walks

0
TipTip
Save
Document
Download
Flag content

Abstract

Topological phases exhibit some of the most striking phenomena in modern physics. Much of the rich behaviour of quantum Hall systems, topological insulators, and topological superconductors can be traced to the existence of robust bound states at interfaces between different topological phases. This robustness has applications in metrology and holds promise for future uses in quantum computing. Engineered quantum systems—notably in photonics, where wavefunctions can be observed directly—provide versatile platforms for creating and probing a variety of topological phases. Here we use photonic quantum walks to observe bound states between systems with different bulk topological properties and demonstrate their robustness to perturbations—a signature of topological protection. Although such bound states are usually discussed for static (time-independent) systems, here we demonstrate their existence in an explicitly time-dependent situation. Moreover, we discover a new phenomenon: a topologically protected pair of bound states unique to periodically driven systems. Topological phases are unusual states of matter whose properties are robust against small perturbations. Using a photonic quantum walk system, Kitagawaet al. simulate one-dimensional topological phases and reveal novel topological phenomena far from the static or adiabatic regimes.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.